
Anomalous kinetics of attractive A+B\0 reactions

Sungchul Kwon, S. Y. Yoon, and Yup Kim
Department of Physics and Research Institute of Basic Sciences, Kyung Hee University, Seoul 130-701, Korea

�Received 20 June 2005; revised manuscript received 9 January 2006; published 6 February 2006�

We investigate the kinetics of the A+B→0 reaction with the attractive interaction between opposite species
in one spatial dimension. The attractive interaction leads to isotropic diffusions inside segregated single species
domains, and accelerates the reactions of opposite species at the domain boundaries. At equal initial densities
of A and B, we analytically and numerically show that the density of particles ���, the size of domains ���, the
distance between the closest neighbor of same species ��AA�, and the distance between adjacent opposite
species ��AB� scale in time as �� t−1/3, �AA� t1/3, and ���AB� t2/3, respectively. These dynamical exponents
define critical behavior distinguished from the class of uniformly driven systems of hard-core particles.
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The irreversible two-species annihilation reaction A+B
→0 has been intensively and widely investigated as a basic
model of various phenomena in physics �1,2�, chemistry �3�,
and biology �4�. The reaction starts from the configuration in
which two species are distributed randomly in space. The
reaction instantaneously takes place with a rate k when two
particles of opposite species encounter on the same site �gen-
erally within a reaction radius� during the motion of par-
ticles. The reaction forms the third inert species, which is
then disregarded thereafter. For the same initial density of A
and B, �A�0�=�B�0�, the mean-field equations predict that �A

and �B decay linearly in time as �kt�−1. However, it turned
out that the random fluctuation of the number of initial par-
ticles results in segregation into an A-rich or B-rich area
�1,5–7�. The fluctuation and segregation develop in time so
that the reactions take place only at the boundaries of two
adjacent segregated domains. As a result, in sufficiently low
dimensions, the effect of fluctuation leads to the anomalous
kinetics. Therefore the evolution of the density of particles
strongly depends on fluctuations, and cannot be derived from
mean-field rate equations.

The density decay has been known to depend on the mo-
tion and the mutual statistics of particles. For isotropic dif-
fusions, the particle density ��t� scales in time t as ��t�
� t−d/4 in d dimensions �d�dc=4� �5–10�. Here dc is the
upper critical dimension and thus in d�dc��t� follows the
mean-field result as ��t�� t−1. With the global relative drift
of one species, ��t� scales as ��t�� t−�d+1�/4 for d�3 �6�. The
hard-core �HC� interaction �constraint� between identical
particles is irrelevant to the case of the isotropic diffusion
and the relative drift �6�. However, when both species are
uniformly driven to the same direction, the HC constraint
completely changes the asymptotic scaling as �� t−�d+1�/6 for
d�2, t−d/4 for 2�d�dc�=4� �11,12�. Without the HC con-
straint, ��t� decays as �� t−d/4 as in the isotropic diffusion
due to Galilean invariance. Recent studies on the reaction
under Lévy mixing �13� and on scale-free networks �14�
showed that some mixing mechanism that homogenizes re-
actants can suppress the role of the fluctuations.

In reality where the recombination of oppositely charged
particles into inert particles is the key physical process, the
attractive interaction between opposite species should be

much more important than the global uniform bias. Real ex-
amples for the attractive interactions are electron-hole re-
combination or photoluminescence in irradiated semiconduc-
tor structures �9� and particle-antiparticle reactions in the
early universe �1�. Recently there has been enormous
progress in manufacturing and understanding the low-
dimensional semiconducting systems such as quantum wells,
wires, and dots �15,16�. In such quasi-one-dimensional
�quasi-two-dimensional� systems or quantum wires �wells�
the electron-hole recombination processes have also been ex-
tensively studied �15,17�. We investigate the kinetics of A
+B→0 reaction with the attractive interaction between op-
posite species, which may be of interest in the recombination
processes in various dimensions. In this paper the scaling
behavior of the reaction is mainly studied in one spatial di-
mension. However, we also briefly discuss higher dimen-
sional conjecture for the reaction with a numerical confirma-
tion.

If two opposite species particles surround a particle as
AAB in one dimension, the central particle A is ballistically
driven to the opposite species B. As a result, the attractive
bias depends on the local configurations of adjacent particles,
and accelerates the reactions of opposite species at the
boundaries of segregated domains. However, inside segre-
gated domains each particle has the same neighboring spe-
cies and effectively performs isotropic random walks, even
for the case with the repulsion between the particles of the
same species. Due to the isotropic diffusion inside domains,
the HC interaction should be irrelevant in our model. Our
model should thus be physically a good model for the
electron-hole recombination in a one-dimensional structure
�quantum wire�, because the long-ranged Coulomb interac-
tions among particles become increasingly more important
for a decreased dimensionality of the semiconductor struc-
tures �16�. With the attractive bias in one spatial dimension,
we analytically and numerically show, regardless of the ex-
istence of the hard core �HC� constraint, that the density � of
particles, the distance �AA between the closest neighbor of
the same species, the size � of domains, and the distance �AB
between adjacent opposite species scale in time as �� t−1/3,
�AA� t1/3, and ���AB� t2/3, respectively. These dynamical
exponents define completely new critical behavior distin-
guished from the class of uniformly driven systems of hard-
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core particles �11,12�, where the exponents for �AA ,�, and
�AB are still controversial. The two features of ballistic and
diffusive motions result in pentagonal space-time trajectories
of bulk particles �Fig. 1�a��, which allow us to derive the
asymptotic scaling analytically.

We consider a configuration in which A and B species are
randomly distributed on a one-dimensional lattice with an
equal initial density, �A�0�=�B�0�. A randomly chosen par-
ticle performs either isotropic or biased random walks de-
pending on the configurations of neighbors. When the chosen
particle is surrounded by two same species neighbors such as
BAB, the chosen particle A performs isotropic random walks.
If two opposite species particles surround a particle such as
AAB, the chosen particle A is constantly driven to its oppo-
site species B.

In the region of a length �, the number of A species is
initially NA=�A�0��±��A�0�� and the same for NB. After a
time t��z, particles travel throughout the whole of the re-
gion, and annihilate in pairs. The residual particle number is
the number fluctuation in the region so we have the relation
NA��� or �A�1/�� for a given length � �5,6�. As the pro-
cesses evolve, the system becomes a homogeneous collec-
tion of alternating A-rich and B-rich domains. To character-
ize the structure of segregated domains, we introduce three
length scales as in Ref. �9�. The length � of the domain is
defined as the distance between the first particles of adjacent
opposite species domains �9�. The length �AB is defined as
the distance between two adjacent particles of opposite spe-
cies, while �AA��BB� is the distance between adjacent A�B�
particles in a A�B� domain. These length scales asymptoti-
cally increase in time as

� � t1/z, �AA � t1/zAA, �AB � t1/zAB. �1�

Due to the attractive bias, a bulk particle inside single spe-
cies domains diffuses isotropically until it becomes a bound-
ary particle, so its space-time trajectory is pentagonal as
shown in Fig. 1�a�. These pentagonal trajectories should
form self-similar �self-affine� fractal structures, because they

should have the scaling symmetry due to the power-law be-
havior of �1�. A typical base unit of the self-similar pentago-
nal trajectories of adjacent opposite domains is schematically
depicted in Fig. 1�b�. This base unit allows us to calculate a
time �� needed to remove the unit of size � surrounded by
one-scale larger ones. Then the size of the larger unit in-
creases by � during �� so we have

d�/dt � �/��, �2�

which gives the dynamic exponent z.
As only boundary particles of each domain have opposite-

species neighbors, the boundary particles ballistically annihi-
late due to the attractive bias. It takes a time �1=�AB for two
boundary particles to annihilate. The second particle from
the boundary isotropically diffuses during time �1 until the
boundary particles annihilate. After the time �1, the second
particle becomes a boundary particle, and constantly moves
to its counterpart during t2=�AB+�AA. So it takes time �2
=�1+ t2 in total for the second particle to annihilate. Simi-
larly, the nth particle from the initial boundary will annihilate
after �n=�n−1+ tn, where tn=�AB+ �n−1��AA for n�2. From
the recurrence relation of �n, we find

�n = n�AB + n�n − 1��AA/2. �3�

As the number of particles in a domain of size � is N����,
the time �� needed to annihilate the domain in the base unit is
given by

�� � N��AB + N�
2�AA, �4�

for N��1. In the above calculations, we consider the mean
positions of bulk particles to effectively be fixed, and neglect
the increase of �AA�t� by diffusions during the annihilation of
the base unit. After a smaller unit is completely annihilated,
the remainder of particles redistribute over the larger unit
increased by the size of the annihilated unit. Hence we ap-
proximate �AA�t�= ¯ =�AA�t+�n�= ¯ =�AA�t+��� during the
annihilation of a smaller unit.

The scaling of �AA is simply �AA��� from the relation
�AA�t��1/��t�. Hence �AA scales as �AA� t1/2z with zAA=2z.
On the other hand, the change of �AB during �� should be in
the order of N��AA because of N� successive annihilations of
two opposite particles at boundaries. So we get d�AB /dt
�	�AB /���� / t. With the scaling of t��z, we find that �AB
follows the same scaling as �, i.e., �AB� t1/z with zAB=z.
Finally using the relations �AA���, N����, and �AB��,
we find �� from Eq. �4� as ����3/2. Substituting ����3/2

into Eq. �2� and integrating the resultant equation, we finally
arrive at the following scaling relation:

t � �3/2. �5�

As a result, we find z=zAB=3/2 with the attractive bias be-
tween opposite species.

From the scaling of �, �AB, and �AA, asymptotic decays of
various densities can be extracted. The densities of total par-
ticles ��=2�A�, adjacent pairs of same species ��AA=�BB� and
adjacent pairs of opposite species ��AB� scale, respectively, as

FIG. 1. �Color online� �a� Snapshot of space-time trajectories of
A+B→0 with the attractive bias between opposite species. �b� The
magnified schematic trajectories of adjacent opposite species do-
mains. Subscripts �1,2,…,n� indicate the order of the positions of
particles from a given domain boundary.
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� � t−
, �AA � t−
AA, �AB � t−
AB. �6�

As � is in the order of ��1/��, we have �� t−1/2z with 

=1/2z=1/3. �AA follows the same scaling of � due to �AA

�1/�AA�1/�� so �AA� t−
 with 
AA=
=1/3. Finally �AB
is �AB�1/�, which leads to �AB� t−1/z with 
AB=1/z=2/3.
Using self-similar structures of space-time trajectories and
scaling arguments for fluctuations of �5,6,9�, we find the fol-
lowing exponents for the reactions A+B→0 with the attrac-
tive bias between opposite species:


 = 
AA = 1/3, 
AB = 2/3,

z = zAB = 3/2, zAA = 3. �7�

Intriguingly and incidentally ��t� decays with the same ex-
ponent 1 /3 as that of the uniformly driven hard-core par-
ticles �11,12�, in which the driven motion of a single species
domain was argued to be described by the noisy Burgers
equation �11�. However, for the present model the 1/3 decay
of ��t� comes from the interplay of isotropic diffusions inside
domains and ballistic annihilations at boundaries. For scal-
ings of interdomain distances and others, our results �7� are
completely different from those of �12�, where �� t7/12,
�AB� t3/8, and �AA� t1/3. Hence we conclude that the attrac-
tive bias between opposite species leads to new critical be-
havior of irreversible A+B→0 reactions.

To confirm our analytic predictions, we now discuss the
simulation results for the model with the attractive bias. With
�A�0�=�B�0�, A and B particles distribute randomly on a lat-
tice. In the simulations we consider both HC particles and
the particles without the HC constraints, which we call the
bosonic particles. In the model with HC particles there can
be at most one particle of a given species on a site. In the
bosonic model there can be many particles of the same spe-
cies on a site. As we shall see, the simulation results are
independent of the HC constraints.

All the simulations are done on one-dimensional chains
with the size up to L=3�106 and the initial density always
set as �A�0�=�B�0�=0.1. We average ��t�, �AA�t�, and �AB�t�
up to 105 time steps over 7 200 independent runs. In Fig. 2,
we plot the densities and their effective exponents defined as

�t�=−ln���t� /��t /2�� / ln 2 and similarly for others. As

shown in Fig. 2, the data for HC particles �Fig. 2�a�� are
almost identical to those for bosonic particles �Fig. 2�b��.
While 
AB still shows larger fluctuations for both HC and
bosonic particles, 
 and 
AA nicely converge to the same
value. We estimate 
=0.33�1�, 
AA=0.33�1�, and 
AB

=0.68�2� for both HC and bosonic models, which agrees
well with the prediction �7�.

To estimate the dynamic exponent z, we measure ��t ,L�
for various L from 214 up to 218. With the scaling assumption
��t ,L�� t−
f�t /Lz�, and 
=1/3, we observe the best data
collapse at z=1.50�2� which also agree well with the predic-
tion �7� as shown in Fig. 3. For the time dependence of
average distances defined in Eq. �1�, we measure �, �AA, and
�AB under the same measurement conditions as those of den-
sities. The effective exponents of the distances are defined
similarly as for 
�t� except the minus sign. The results for
the average distances are shown in Fig. 4. Here we can also
see that the data for HC particles �Fig. 4�a�� are almost iden-
tical to those for bosonic particles �Fig. 4�b��. From Fig. 4,
we estimate 1/z=0.683�3�, 1 /zAA=0.338�3�, and 1/zAB

=0.66�1� for both HC and bosonic particles.
All the simulation results in Figs. 2–4 numerically con-

firm the prediction �7�. They also confirm the irrelevance of
the HC constraints in our model unlike in the uniformly
driven systems �6,11�. The isotropic diffusion inside segre-

FIG. 2. �Color online� Densities �inset� and their effective expo-
nents of HC particles �a� and bosonic particle �b�. From top to
bottom, each line corresponds to 
AA, 
, and 
AB. In the inset, the
order is �, �AA, and �AB, respectively.

FIG. 3. �Color online� Scaling collapse for ��t� of hard-core
particles with 
=1/3 and z=3/2. The inset shows the raw data for
��t�. Used particles are hard-core particles. The plot for bosonic
particles is not shown because it is almost identical to the main plot.

FIG. 4. �Color online� Average distances �inset� and their effec-
tive exponents in the model with HC particles �a� and with bosonic
particles �b�. From top to bottom, each line corresponds to 1/z,
1 /zAB, and 1/zAA, respectively. In the inset the order of lines is the
same as in the main plot.
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gated domains leads to Galilean invariance of domains so the
scaling behavior is not affected by HC constraint.

In higher dimensions, the length � of a typical domain at
time t is still expected to satisfy �� t2/3 due to the diffusive
and ballistic motions. We thus predict ��1/�V=1/��d

� t−d/3 with the upper critical dimension dc=3. We also nu-
merically confirm the scaling �� t−d/3 in two dimensions
�18�. Furthermore we confirm continuously varying 
’s and
z’s depending on � when the attractive interaction between a
pair of opposite species varies as r−� where r is the distance
between the pair �18�.

To summarize, we investigate the kinetics of A+B→0
reactions with the attractive bias between opposite species.
As reactions proceed, A-rich and B-rich domains appear al-
ternatively, and annihilations of opposite species take place
only at the boundaries of closest neighboring domains
�1,5,6�. However the reactions at domain boundaries are ac-
celerated by the attractive bias, while particles inside do-
mains perform isotropic random walks. The interplay of iso-
tropic diffusions and ballistic annihilations of boundary
particles leads to pentagonal self-similar trajectories, which

allow us to derive the analytic prediction �7�. The anomalous
density decay t−1/3 appears to be the same scaling behavior as
uniformly driven systems of HC particles, which was argued
to be described by noisy Burgers equations �11�. However,
our system does not show the same scaling behavior as the
uniformly driven system because scaling behaviors of basic
distances are different �12�. The difference can be inferred
from the underlying mechanisms. In our model, isotropic
diffusions inside domains lead to the Galilean invariance, so
HC constraint has no effects on the kinetics. Furthermore,
there is no global bias to one direction, which changes the
kinetics of HC particles. Only boundary particles feel bias to
opposite species, which is the essential physical factor to
distinguish our model from the models in Refs. �1,5,6�. We
conclude that the attractive bias between opposite species is
the key feature of the new critical behavior characterized by
Eq. �7� and another path to the anomalous density decay of
t−1/3 in one dimension.
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